Non-contact atomic force microscopy (nc-AFM) is an advanced microscopy technique that allows the imaging and manipulation of surfaces with atomic resolution without physical contact between the tip and the sample. It operates by measuring the interaction forces between a sharp tip and the surface without making direct contact, typically using dynamic modes such as frequency modulation or amplitude modulation. nc-AFM offers several advantages over traditional contact-based AFM, including reduced sample damage, improved resolution, and the ability to image delicate surfaces and soft materials. This technique is widely used in various fields such as nanotechnology, materials science, and surface chemistry for studying atomic and molecular structures, surface morphology, and nanoscale properties. nc-AFM enables the investigation of surface properties such as surface roughness, adhesion, and mechanical properties with unprecedented precision. Advances in nc-AFM instrumentation, including improved tip designs, feedback control mechanisms, and signal processing algorithms, continue to enhance its capabilities and applications. Collaboration between physicists, engineers, and materials scientists drives innovation in nc-AFM, leading to new insights into nanoscale phenomena and the development of novel nanomaterials and devices.
Title : Advances in plasma-based waste treatment for sustainable communities
Hossam A Gabbar, Ontario Tech University, Canada
Title : Nanostructured biodevices based on carbon nanotubes and glyconanoparticles for bioelectrocatalytic applications
Serge Cosnier, Silesian University of Technology, Poland
Title : Carbon capture and storage: The impact of impurities in CO2 streams
Andy Brown, Progressive Energy Ltd, United Kingdom
Title : Supramolecular nano chemistries: Fighting viruses, inhibiting bacteria and growing tissues
Thomas J Webster, Hebei University of Technology, China
Title : Chemical engineering of vanadium and tantalum zeolites for application in environmental catalysis
Stanislaw Dzwigaj, Sorbonne Universite, France
Title : Disrupting TNF-α and TNFR1 interaction: Computational insights into the potential of D-Pinitol as an anti-inflammatory therapeutic
Ferran Acuna Pares, Universidad Internacional de la Rioja (UNIR), Spain