Materials & Nanochemistry is at the forefront of scientific innovation, driving advancements in energy storage, electronics, medicine, and sustainable materials. The precise manipulation of matter at the nanoscale enables the development of high-performance materials with enhanced mechanical, electrical, and optical properties. Breakthroughs in nanostructured catalysts improve reaction efficiency in green chemistry, reducing environmental impact. In biomedicine, nanomaterials facilitate targeted drug delivery and biosensing applications, revolutionizing diagnostics and therapy. Energy-efficient nanomaterials contribute to next-generation batteries, fuel cells, and solar cells, promoting sustainable energy solutions. The continuous evolution of Materials & Nanochemistry also leads to self-healing polymers, ultralight aerogels, and advanced coatings, expanding possibilities across multiple industries. As computational modeling and AI-driven material design refine synthesis processes, this field holds immense potential for future technological and environmental advancements.
Title : Advances in plasma-based waste treatment for sustainable communities
Hossam A Gabbar, Ontario Tech University, Canada
Title : Nanostructured biodevices based on carbon nanotubes and glyconanoparticles for bioelectrocatalytic applications
Serge Cosnier, Silesian University of Technology, Poland
Title : Carbon capture and storage: The impact of impurities in CO2 streams
Andy Brown, Progressive Energy Ltd, United Kingdom
Title : Supramolecular nano chemistries: Fighting viruses, inhibiting bacteria and growing tissues
Thomas J Webster, Hebei University of Technology, China
Title : Chemical engineering of vanadium and tantalum zeolites for application in environmental catalysis
Stanislaw Dzwigaj, Sorbonne Universite, France
Title : Disrupting TNF-α and TNFR1 interaction: Computational insights into the potential of D-Pinitol as an anti-inflammatory therapeutic
Ferran Acuna Pares, Universidad Internacional de la Rioja (UNIR), Spain