Mathematical models and simulations are transforming our understanding of chemical systems, enabling precise predictions of molecular behavior and reaction mechanisms. Quantum chemistry, molecular dynamics, and density functional theory provide insights into electronic structures, catalysis, and material properties at the atomic level. High-performance computing accelerates drug discovery, materials design, and energy storage innovations by optimizing reaction pathways and predicting novel compounds. Machine learning and artificial intelligence enhance computational efficiency, allowing for the rapid screening of molecular libraries. Simulated spectra and thermodynamic models aid experimental validation, reducing the need for costly trial-and-error methods. As technology advances, theoretical & computational chemistry continues to shape diverse fields, from nanotechnology and biophysics to green chemistry and space exploration, bridging theoretical principles with real-world applications.
Title : Eliminating implant failure in humans with nano chemistry: 30,000 cases and counting
Thomas J Webster, Brown University, United States
Title : Nutrient and heavy metal loads from the Ribeiras to Coastal zones: A land-ocean continuum perspective in Madeira Island
Aracelis Del Carmen Narayan Rajnauth, University of Porto, Portugal
Title : Prospective polyoxometalate-based covalent organic framework heterogeneous catalysts
Arash Ebrahimi, Comenius University Bratislava, Slovakia, Slovenia
Title : De novo molecular design and bioactivity prediction of novel hexahydroquinolines as transmission-blocking PfCDPK4 inhibitors
Gbolahan O Oduselu, University of Ghana, Ghana
Title : Expanding and improve the 2D periodic law of Менделееь elements, and construct the 3D periodic law of elements
Zhongsheng Lee, Zhengzhou Commercial Technician College, China
Title : Advances in plasma-based radioactive waste treatment
Hossam A Gabbar, Ontario Tech University, Canada