Organometallic chemistry is defined as the scientific study of organometallic compounds, which are chemical compounds with at least one chemical bonding between a carbon atom of an organic molecule and a metal, such as alkali, alkaline earth, and transition metals, as well as metalloids such as boron, silicon, and selenium. Aside from connections to organyl fragments or molecules, organometallic linkages to 'inorganic' carbon, such as carbon monoxide (metal carbonyls), cyanide, or carbide, are also common. Organometallic compounds are widely used as stoichiometric catalysts in research and industrial chemical reactions, as well as in the role of catalysts to increase the rates of such reactions (e.g., in homogeneous catalysis), with target molecules including polymers, pharmaceuticals, and a wide range of other practical products. The bond between the metal atom and the carbon atom in the organic complex is often covalent. The carbon that is bonded to the central metal atom has a carbanionic characteristic when metals with relatively high electro positivity (such as sodium and lithium) generate these compounds.
Title : Synthesis of chitosan composite of metal organic framework for the adsorption of dyes, kinetic and thermodynamic approach
Tooba Saeed, University of Peshawar, Pakistan
Title : Time Domain NMR: A new Paradigm in Process Control for Sodium in Foods and Beverages
Dan Kroll, Iowa State University, United States
Title : Synthesis of Copper (II) Oxide Nanoparticles using Curcumin and Investigation of Molecular Interactions through DFT Analysis
Madhulata Shukla, Veer Kunwar Singh University, India
Title : An overview on the correlation of oxidative stress, chronic inflammation, microbial infections, and diabetes mellitus: Therapeutic potential of natural products
Demissie Shimeli, ASTU, Ethiopia
Title : Nature meets innovation: Green synthesis of nanoparticles using plant extracts and ionic liquids for a sustainable future
Azeez A Barzinjy, Soran University, Iraq
Title : Lewis and bronsted acids effects on the mechanism of the diels alder reaction of dimethylfuran. A DFT Study
Hafida Chemouri, Ecole Superieure En Sciences Appliquees De Tlemcen ESSA-Tlemcen, Algeria