Electron probe microanalysis (EPMA) is an analytical technique used to determine the elemental composition and distribution within solid materials with high spatial resolution. It utilizes an electron beam to excite the atoms in the sample, causing them to emit characteristic X-rays. These X-rays are then detected and analyzed to identify the elements present and quantify their concentrations. EPMA provides valuable information about the chemical composition, crystal structure, and elemental mapping of a wide range of materials, including minerals, metals, ceramics, and geological samples. It offers superior sensitivity and accuracy compared to other elemental analysis techniques, such as energy-dispersive X-ray spectroscopy (EDS), particularly for trace element detection and quantification. EPMA is widely used in materials science, geology, metallurgy, and semiconductor research for material characterization, quality control, and forensic analysis. The technique requires meticulous sample preparation, including mounting, polishing, and coating with a conductive layer to prevent charging effects. EPMA instruments are equipped with sophisticated electron optics, X-ray detectors, and computer-controlled stage systems for precise analysis and imaging capabilities. Automated data acquisition and analysis software streamline the process and enable rapid elemental mapping and line scans across the sample surface. EPMA is a non-destructive technique, allowing repeated analysis of the same sample region without alteration, making it suitable for investigating heterogeneous samples and historical artifacts. Ongoing developments in EPMA technology aim to improve spatial resolution, sensitivity, and elemental quantification accuracy, further enhancing its utility in materials research and industrial applications.
Title : Synthesis of chitosan composite of metal organic framework for the adsorption of dyes, kinetic and thermodynamic approach
Tooba Saeed, University of Peshawar, Pakistan
Title : Time Domain NMR: A new Paradigm in Process Control for Sodium in Foods and Beverages
Dan Kroll, Iowa State University, United States
Title : Synthesis of Copper (II) Oxide Nanoparticles using Curcumin and Investigation of Molecular Interactions through DFT Analysis
Madhulata Shukla, Veer Kunwar Singh University, India
Title : An overview on the correlation of oxidative stress, chronic inflammation, microbial infections, and diabetes mellitus: Therapeutic potential of natural products
Demissie Shimeli, ASTU, Ethiopia
Title : Nature meets innovation: Green synthesis of nanoparticles using plant extracts and ionic liquids for a sustainable future
Azeez A Barzinjy, Soran University, Iraq
Title : Lewis and bronsted acids effects on the mechanism of the diels alder reaction of dimethylfuran. A DFT Study
Hafida Chemouri, Ecole Superieure En Sciences Appliquees De Tlemcen ESSA-Tlemcen, Algeria