Computational chemistry is a cutting-edge field that utilizes computer simulations and mathematical models to investigate chemical phenomena and predict molecular behavior. By employing quantum mechanics, molecular dynamics, and statistical methods, computational chemists can simulate complex molecular structures, interactions, and reactions with remarkable accuracy. These simulations provide valuable insights into molecular properties, such as energy, structure, and reactivity, that are often challenging to observe experimentally. Computational chemistry plays a crucial role in drug discovery, materials design, and reaction mechanism elucidation, enabling researchers to screen vast chemical libraries, optimize molecular structures, and understand fundamental chemical processes at the atomic level. By complementing experimental approaches, computational chemistry accelerates scientific discovery, fosters innovation, and drives advancements in diverse fields of chemistry and beyond.
Title : Eliminating implant failure in humans with nano chemistry: 30,000 cases and counting
Thomas J Webster, Brown University, United States
Title : Synthesis of chitosan composite of metal organic framework for the adsorption of dyes, kinetic and thermodynamic approach
Tooba Saeed, University of Peshawar, Pakistan
Title : Synthesis, ADMET, PASS, molecular docking, and dynamics simulation investigation of novel octanoyl glucoopyranosides & valeroyl ribofuranoside esters.
Hasinul Babu, University of Chittagong, Bangladesh
Title : Expanding and improve the 2D periodic law of Менделееь elements, and construct the "3D periodic law of elements"
Zhongsheng Lee, Zhengzhou Commercial Technician College, China
Title : Advances in Plasma-Based Radioactive Waste Treatment
Hossam A Gabbar, Ontario Tech University, Canada
Title : Nature meets innovation: Green synthesis of nanoparticles using plant extracts and ionic liquids for a sustainable future
Azeez A Barzinjy, Soran University, Iraq