Chemical reaction engineering has made a significant contribution to the commercialization of laboratory-developed chemistry. Reaction engineering can be used to analyse reactions, identify rate-limiting processes, calculate overall rates, choose reactor configurations, and design and scale-up reactors. Insights into catalytic cycles and clues for optimizing catalyst systems can also be gained through reaction engineering. Chemical reactions are fundamental to the transformation of molecules from basic materials to useful products and energy. Many of these changes rely on catalysis, which leads to more efficient and environmentally friendly processing methods. Catalysts are complicated materials that must meet a number of criteria on a variety of scales in order to be used in catalytic processes. For this, an integrated approach is needed, one that considers sustainability and scalability while combining modelling and experiments, catalysis science, and chemical engineering.
Title : Eliminating implant failure in humans with nano chemistry: 30,000 cases and counting
Thomas J Webster, Brown University, United States
Title : Synthesis of chitosan composite of metal organic framework for the adsorption of dyes, kinetic and thermodynamic approach
Tooba Saeed, University of Peshawar, Pakistan
Title : Synthesis, ADMET, PASS, molecular docking, and dynamics simulation investigation of novel octanoyl glucoopyranosides & valeroyl ribofuranoside esters.
Hasinul Babu, University of Chittagong, Bangladesh
Title : Prospective polyoxometalate-based covalent organic framework heterogeneous catalysts
Arash Ebrahimi, Comenius University in Bratislava, Slovenia
Title : Utilizing Generative AI for Interactive Borane Modeling: Insights from Wade's Rule in Undergraduate Education
Mai Yan Yuen, The University of Hong Kong, Hong Kong
Title : Molecularly imprinted polymer-bimetallic nanoparticle based electrochemical sensor for dual detection of phenol iosmers micopollutants in water
Melkamu Biyana Regasa, Wollega University, Ethiopia